Industrial combustion of solid biomass fuels – state-of-the-art and relevant future developments

Prof. Dr. Ingwald Obernberger

Institute for Process Engineering
Graz University of Technology
TEL.: +43 (316) 481300; FAX: +43 (316) 4813004
E-MAIL: ingwald.obernberger@tugraz.at
HOMEPAGE: http://RNS.TUGRAZ.AT

Contents

➢ Thermal biomass utilisation in Europe
➢ Biomass combustion and biomass / coal co-firing technologies
➢ Relevant characteristics of biomass fuels
➢ Ash formation and ash related problems
 • ash and aerosol formation
 • slagging, deposit formation and corrosion
 • additives to reduce ash related problems
➢ CFD as an efficient tool to design and optimise biomass combustion systems
➢ Gaseous emissions under special consideration of NOx
➢ Intelligent process control systems
➢ Relevant future R&D trends
Latest EU policies related to biomass

- Energy & climate change package (March 2007)
 - 20% renewables by 2020
 - 20% reduction of greenhouse gas emissions by 2020
 - 20% increase of energy efficiency
 - 10% increase in biofuels by 2020

- Proposal for a Directive for the promotion of the use of energy from renewable energy sources (January 2008)

- EU Biomass action plan (2005)
 - Doubling the biomass use by 2010
 - reduction of greenhouse gas emissions by 209 Mt CO$_2$eq/year in 2010
 - employment of up to 300,000 people in 2010
 - reduction of reliance on imported energy by 6%

 - Increase share of green electricity for the EU25 from 14% to 21% in 2010

Electricity generation from biomass in EU-27

Biomass combustion technologies – classification by capacity

- Small-scale biomass combustion systems
capacity range: <100 kW\text{th}

- Medium-scale combustion systems
capacity range: 100 kW\text{th} to 10 MW\text{th}

- Large-scale combustion systems
capacity range: >10 MW\text{th}

- Co-firing of biomass in coal fired power stations
capacity range: some 100 MW\text{th}

Biomass combustion technologies – overview

- fixed bed combustion (grate furnace)
- bubbling fluidised bed combustion
- circulating fluidised bed combustion
- pulverised fuel combustion
Medium-scale biomass combustion systems

Application:
- district heating
- process heating and cooling
- CHP production

Fuels used:
- wood chips
- bark
- forest residues
- waste wood
- straw

Technologies:
- underfeed stokers
- grate-fired systems
- dust burners

Large-scale biomass combustion systems

Application:
- CHP production
- power production

Fuels used:
- bark
- forest residues
- waste wood
- straw, cereals
- fruit stones, kernels, husks, shells

Technologies:
- grate-fired systems
- fluidised beds
Application:
- power production
- CHP

Fuels used:
- forest residues
- sawdust, wood chips
- pellets
- straw
- fruit stones, kernels, husks, shells

Technologies:
- co-firing of finely milled biomass mingled with coal
- biomass co-firing in fluidised bed combustion systems
- co-firing in separate combustion units and junction of steam
- biomass gasification and utilisation of the product gas as fuel in a coal combustion system

Combustion relevant characteristics of solid biomass fuels – physical properties

<table>
<thead>
<tr>
<th>Properties</th>
<th>Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture content</td>
<td>Storability, dry matter losses, NCV, self-ignition, plant design</td>
</tr>
<tr>
<td>NCV, GCV</td>
<td>Fuel utilisation, plant design</td>
</tr>
<tr>
<td>Volatiles</td>
<td>Thermal decomposition behaviour</td>
</tr>
<tr>
<td>Ash content</td>
<td>Dust emissions, ash manipulation, ash utilisation / disposal, combustion technology</td>
</tr>
<tr>
<td>Ash melting behaviour</td>
<td>Operational safety, combustion technology, process control system, hard deposit formation</td>
</tr>
<tr>
<td>Fungi</td>
<td>Health risks</td>
</tr>
<tr>
<td>Bulk density</td>
<td>Fuel logistics (storage, transport, handling)</td>
</tr>
<tr>
<td>Particle density</td>
<td>Thermal conductance, thermal decomposition</td>
</tr>
<tr>
<td>Physical dimension, form, size distribution</td>
<td>Hoisting and conveying, combustion technology, bridging, operational safety, drying, formation of dust</td>
</tr>
<tr>
<td>Amount of fines</td>
<td>Fuel feeding, particle entrainment</td>
</tr>
<tr>
<td>Abrasion resistance (wood pressings)</td>
<td>Quality changes, segregation, fine parts</td>
</tr>
</tbody>
</table>
Combustion relevant characteristics of solid biomass fuels – chemical properties

<table>
<thead>
<tr>
<th>Properties</th>
<th>Effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon (C)</td>
<td>GCV</td>
</tr>
<tr>
<td>Hydrogen (H)</td>
<td>GCV, NCV</td>
</tr>
<tr>
<td>Oxygen (O)</td>
<td>GCV</td>
</tr>
<tr>
<td>Chlorine (Cl)</td>
<td>HCl-, PCDD/F emissions, corrosion</td>
</tr>
<tr>
<td>Nitrogen (N)</td>
<td>NOx-, N2O emissions</td>
</tr>
<tr>
<td>Sulphur (S)</td>
<td>SOx emissions, corrosion</td>
</tr>
<tr>
<td>Fluor (F)</td>
<td>HF emissions, corrosion</td>
</tr>
<tr>
<td>Potassium (K)</td>
<td>Corrosion (heat exchangers, superheaters), lowering ash melting</td>
</tr>
<tr>
<td></td>
<td>temperature, formation of aerosols, ash utilisation (plant nutrient)</td>
</tr>
<tr>
<td>Sodium (Na)</td>
<td>Corrosion (heat exchangers, superheaters), lowering ash melting</td>
</tr>
<tr>
<td></td>
<td>temperature, formation of aerosols</td>
</tr>
<tr>
<td>Magnesium (Mg)</td>
<td>Increase of ash melting temperature, ash utilisation (plant nutrient)</td>
</tr>
<tr>
<td>Calcium (Ca)</td>
<td>Increase of ash melting temperature, ash utilisation (plant nutrient)</td>
</tr>
<tr>
<td>Phosphor (P)</td>
<td>Ash utilisation (plant nutrient), ash melting, aerosol formation</td>
</tr>
<tr>
<td>Heavy metals</td>
<td>Emissions, ash utilisation, formation of aerosols</td>
</tr>
</tbody>
</table>

Chemical compositions of different solid biomass fuels – ash, S, Cl, K

mean values and standard deviations; d.b. … dry basis
Chemical compositions of different solid biomass fuels – relevant guiding parameters

- **2S/Cl mol/mol**
 - Wood chips
 - Bark
 - Straw
 - Waste wood

- **(K+Na)/(2S+Cl) mol/mol**
 - Wood chips
 - Bark
 - Straw
 - Waste wood

- **K+Na+Zn+Pb mg/kg (d.b.)**
 - Wood chips
 - Bark
 - Straw
 - Waste wood

Mean values and standard deviations; d.b. ... dry basis

Ash related problems in biomass combustion processes

- Ash and aerosol formation
- Slagging
- Deposit formation
- Corrosion
- Additives to reduce ash related problems
Ash formation during biomass combustion

Biomass particle
- Devolatilisation
- Char combustion, pore enlargement, ash fusion
- Ash coalescence
- Char break up
- Char burn out
- Bottom ash

Aerosol formation by fragmentation of particles
Vapourisation
Heterogeneous condensation or reaction; surface enrichment of heavy metal compounds (Pb, Zn), K₂SO₄, KCl
Ash coalescence
Char break up
Char burn out
Bottom ash

Aerosols
0.01 - 1.0 µm

Entrainment of coarse fly ash particles with the flue gas
Homogeneous nucleation
(K₂SO₄, KCl, K₂CO₃, ZnO)
Coagulation and chain agglomerate formation

Particle size distributions of fly ashes from biomass combustion

Fly ashes
Aerosols
Coarse fly ashes

Data related to dry flue gas and 13 vol.% O₂; results from grate-fired combustion systems
Typical compositions of aerosols from biomass combustion and co-firing of biomass (sawdust)

Data related to dry flue gas and 13 vol.% O₂; results from real-scale test runs.
Main features:

- Application for in-situ measurements up to 1,100°C
- Determination of the amount and particle size distribution of aerosols with the subsequent possibility of structural and chemical characterisation

Formation of molten phases – results from thermodynamic equilibrium analyses

Results of thermodynamic equilibrium calculations concerning the grate ash; ash composition data for the simulations were taken from real-scale test runs with bark and straw at grate-fired furnaces.
The blue line shows a typical biomass fly ash. Often fly ash is almost pure K₂SO₄, which has a high melting point, 1068°C.

If carbonate is formed the first melting point decreases to 940°C, if chlorides form to 643°C.

Small amounts of Na (red curve) decrease the first melting point to 609°C.

Presence of Pb and Zn, even in small amounts compared to K and Na, results in molten phases at such low temperatures as 196°C.

That low first melting points can cause serious corrosion and contribute to rapid build-up of deposits on heat transfer surfaces.

Results based on a new thermodynamic model developed by Abo University Academy within the EU FP6 project BIOASH.

CFD simulation of aerosol formation

Explanations: 1st and 2nd radiative duct of a biomass fired water tube steam boiler (nominal thermal load: 40MWth); reactive sulphur is represented by SO₃; fuel: waste wood; aerosol species considered: K₂SO₄, K₂CO₃, KCl, (KCl)₂, NaSO₄, NaCl, (NaCl)₂, PbCl₂, PbO, ZnCl₂, ZnO
Solid phase reactions involving alkali metal chlorides

\[2KCl(s) + SO_2(g) + 0.5 O_2(g) + H_2O(g) \rightarrow K_2SO_4(s) + 2HCl(g) \]

→ highly relevant

Reactions involving molten alkali metal and other chlorides

→ relevant

<table>
<thead>
<tr>
<th>System</th>
<th>Melting/eutectic temperature (°C)</th>
<th>Composition at the eutectic point (mole% alkali)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl</td>
<td>801</td>
<td>—</td>
</tr>
<tr>
<td>KCl</td>
<td>772</td>
<td>—</td>
</tr>
<tr>
<td>FeCl₂</td>
<td>677</td>
<td>—</td>
</tr>
<tr>
<td>CrCl₂</td>
<td>845</td>
<td>—</td>
</tr>
<tr>
<td>NaCl–FeCl₂</td>
<td>370–374</td>
<td>c. 56</td>
</tr>
<tr>
<td>KCl–FeCl₂</td>
<td>340–393</td>
<td>45.8–91.8</td>
</tr>
<tr>
<td>NaCl–CrCl₂</td>
<td>437</td>
<td>53.7</td>
</tr>
<tr>
<td>KCl–CrCl₂</td>
<td>462–457</td>
<td>36–70</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>N₂ CO₂ O₂ SO₂ SO₃ MeCl (g)</th>
<th>flue gas</th>
<th>SO₂ O₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>sulfates/chlorides silicates</td>
<td>Cl₂ + Na₂SO₄ ← SO₂ + O₂ + 2 NaCl</td>
<td></td>
</tr>
<tr>
<td>Fe₃O₄ + ash</td>
<td>outer oxide layer</td>
<td>3 Fe₃O₄ ← 1/2 O₂ + 2 Fe₃O₄</td>
</tr>
<tr>
<td>Fe₃O₄ + FeS</td>
<td>inner oxide layer</td>
<td>3 Cl₂ + Fe₆O₁₀ ← 2 O₂ + 3 FeCl₂</td>
</tr>
<tr>
<td>FeCl₂</td>
<td>corrosion front</td>
<td>4 Cl₂ + FeS + Fe₆O₁₀ ← SO₂ + O₂ + 4 FeCl₂</td>
</tr>
<tr>
<td>low alloyed steel</td>
<td>tube wall</td>
<td>Cl₂ + Fe ← FeCl₂</td>
</tr>
</tbody>
</table>

\[p_{FeCl₂} = 10^{-5} - 10^{-3} \text{ bar at 400 - 530 °C} \]
Additives applied in biomass combustion systems

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Additive</th>
<th>State-of-application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sulphation of chlorides to reduce corrosion</td>
<td>ChlorOut (ammonium sulphate)</td>
<td>Demonstration</td>
</tr>
<tr>
<td>Alkaline metal catchers to reduce aerosol formation</td>
<td>Kaolin</td>
<td>R&D</td>
</tr>
<tr>
<td>Additives to increase ash melting temperatures</td>
<td>Ca-based</td>
<td>R&D</td>
</tr>
<tr>
<td>Mg-based</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Additives to reduce SO$_2$-HCl- and PCDD/F-emissions</td>
<td>Limestone</td>
<td>State-of-the-art</td>
</tr>
<tr>
<td>Sodium bicarbonate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Activated charcoal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Additives for NO$_x$ emission reduction</td>
<td>Urea</td>
<td>State-of-the-art</td>
</tr>
<tr>
<td>NH$_3$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CFD simulation of biomass combustion plants — model overview

Models for gas phase combustion and NO$_x$ formation
- Turbulence models
- Turbulence-chemistry interaction models
- Reaction mechanisms

Finite cell model for convective heat exchangers
- For fire tube boilers, water tube and steam boilers, thermal oil boilers
- Consideration of flow, heat transfer, pressure distribution; calculation of tube surface temperatures
- Link with ash deposit model (in progress)

Models for solid biomass conversion
- Single particle conversion and volatiles release
- Multiphase modelling for particle-particle and particle-gas interactions in packed beds (and entrained flows)

Models for ash deposit and aerosol formation
- Direct wall condensation, deposition of fly ash particles
- Aerosol formation and deposition
- Erosion
- Deposit growth and influence on heat transfer
Layer model (LM) for thermally thick biomass particles

- Particle is separated in 4 discrete layers
- Each layer corresponds to one conversion step:
 1 – Drying
 2 – Devolatilisation
 3 – Char burnout
 4 – Inert heating of ash layer
- Boundaries between the layers correspond to reaction fronts which move towards the particle centre
- Model variables: radiiuses of conversion fronts \(r_i \) and temperatures of layers \(T_i \)
- Temperature and species gradients in the particle are considered
- Simultaneous occurrence of single processes is considered
- Advantage of layer model: more exact calculation of particle conversion compared to the standard model for thermally thin particles (Discrete Phase Model) at considerably reduced calculation times compared to a detailed simulation.

Structure of overall model

1. Models for single biomass particle conversion
 - Modelling of thermally thin particles – standard FLUENT model adapted for biomass
 - Modelling of thermally thick particles – Layer Model (LM)

 - Lagrangian Discrete Phase Model (DPM) for dilute discrete phase (volume fraction < 10%)
 - Hybrid Euler-Lagrange Model / Dense Discrete Phase Model (DDPM) for dense discrete phases (volume fraction > 10%)

3. Gas phase combustion modelling
 - Advantages of overall model
 - Sub-models can be combined arbitrarily
 - Model is suitable for packed bed combustion and for pulverised biomass combustion
Processes and applied sub-models

(1) ANS turbulence models
- 2-equation models (k-ε Models: Standard k-ε Model, Realizable k-ε Model; k-ω Models) for weakly and moderately anisotropic turbulent flows
- Reynolds stress models for highly anisotropic turbulent flows

(2) Models for turbulence-chemistry interactions
- Eddy Dissipation Model in combination with global reaction mechanisms for mixing dominated processes
- Eddy Dissipation Concept in combination with detailed and reduced reaction mechanisms for consideration of complex turbulence-chemistry interactions

(3) Reaction mechanisms
- Global methane 3-step reaction mechanism
- Reduced Kilpinen 97-Skeletal mechanism (subsets for combustion and N-chemistry) validated for gas phase chemistry in biomass combustion systems
- Detailed Kilpinen 92 + Kilpinen 97 (subsets for combustion and N-chemistry) validated for gas phase chemistry in biomass combustion systems

CFD simulation of ash deposit formation – deposition of coarse fly ash particles and direct wall condensation

Deposition mass fluxes [mg/m²s] to the walls of a biomass grate furnace and the flame tube of a fire tube boiler

Explanations: fuel waste wood, nominal thermal load 440 kWth; operation duration: 1 hour
Trajectories of coarse fly ash particles with different size (Stokes number St).

Mass fraction of impacting particles in dependence of tube row and particle size (Stokes number St).

Gaseous and particulate emissions - strategies for emission reduction (I)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Measures for emission reduction</th>
</tr>
</thead>
</table>
| CO, OGC, PAH | • sufficient residence time at furnace temperatures above 850°C
| | • good mixing of flue gases with the combustion air
| | • sufficient particle/ash burnout (TOC <5 wt%) |
| PCDD/F | • utilise fuels with low Cl-contents
| | • complete combustion of the flue gas and the fly ash particles
| | • avoid entrainment of incompletely combusted fuel particles
| | • precipitation temperature of fly ashes > 600°C or < 250°C
| | • secondary measure: sorption with activated carbon |
Gaseous and Particulate Emissions - Strategies for Emission Reduction (II)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Measures for Emission Reduction</th>
</tr>
</thead>
</table>
| **HCl, SO₂** | • utilise fuels with low S- and Cl-contents
• secondary measures: dry sorption systems or scrubbers |
| **Aerosols** | • utilise fuels with low K, Na and volatile heavy metal contents
• reduce release of easily volatile inorganic species
• secondary measures: baghouse filters
 electrostatic precipitators |
| **Heavy Metals** | • utilise fuels with low heavy metals contents
(chemically untreated biomass)
• application of highly efficient aerosol precipitators
(highly efficient baghouse filters)
• dry sorption for Hg emission control |

Relation Between Fuel N Content, NOₓ Emission Reduction Measures and NOₓ Emissions

![Graph](image)

Explanations:
- NOₓ calculated as NO₂ and related to dry flue gas and 11 vol.% O₂
- NOₓ calculated as NO₂ and related to dry flue gas and 11 vol.% O₂

Combustion Processes:
- Conventional Combustion
- Low-NOₓ Combustion with Air Staging
- SNCR Process
- SCR Process
Conversion of the fuel-N to N contained in NO\textsubscript{x}-precursors during combustion of different biomass fuels

Explanations: TFN … total fixed nitrogen = Nitrogen bound in NO, NO\textsubscript{2}, NH\textsubscript{3}, HCN and N\textsubscript{2}O

CFD Simulation of NO\textsubscript{x} formation – model overview

- Release of the N-species (NO, NH\textsubscript{3} and HCN) from the solid fuel on the grate encountered for by the empirical fuel bed model
- CFD simulation based on the Eddy Dissipation Concept and the Skeletal Kilpinen 97 reaction mechanism (25 species, 104 reactions)
- ISAT (In-Situ Adaptive Tabulation) algorithm used for the tabulation of reaction kinetics during run-time for the reduction of calculation time
- Advancements compared to the CFD models based on global reaction kinetics for complex NO\textsubscript{x} chemistry:
 - Deeper insight into the local course of the processes by the prediction of the radical pool important in the NO\textsubscript{x} formation
 - Detailed analysis of the interactions between the flow field and nitrogen chemistry possible
Profiles of NO and N₂ net production rate (indicator for NOₓ reduction) in a biomass grate furnace and comparison measurement/simulation.

Explanations: nominal thermal load 440 kWth; fuel fibre board, fuel nitrogen content 6.5 [wt.% d.b.]

CFD simulation of NOₓ formation – grate furnace

<table>
<thead>
<tr>
<th></th>
<th>Measurement</th>
<th>Simulation</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO</td>
<td>7.5 ± 10.2</td>
<td>4.5</td>
<td>ppmV d.b.</td>
</tr>
<tr>
<td>NO</td>
<td>391.5 ± 68.0</td>
<td>417.4</td>
<td>ppmV d.b.</td>
</tr>
<tr>
<td>NO₂</td>
<td>-</td>
<td>8.4</td>
<td>ppmV d.b.</td>
</tr>
<tr>
<td>NH₃</td>
<td>-</td>
<td>1.6 E-07</td>
<td>ppmV d.b.</td>
</tr>
<tr>
<td>HCN</td>
<td>-</td>
<td>3.5 E-05</td>
<td>ppmV d.b.</td>
</tr>
</tbody>
</table>

CFD simulation of NOₓ formation (3) – small-scale packed-bed furnace

NO profile and cross-section averaged TFN/TFN_in ratio in a small-scale packed-bed furnace.

Explanations: boiler output 15 kW; fuel: softwood pellets; fuel nitrogen content: 0.05 [wt.% d.b.]; TFN...total fixed nitrogen encountered in NO, NH₃, HCN, N₂O and NO₂; TFN_in...total fixed nitrogen released from the fuel bed.
Still a high potential for optimisation is given.

Currently applied control strategies

- mostly a decentralised structure
 (one input variable is coupled with one output and controlled separately)

- they do not consider the coupled and non-linear nature of control loops in biomass furnaces

- do not utilise the full potential of well engineered plants

Neural network based control

+ experimentally determined model
- no consideration of the physical coherences
- resulting model strongly depends on training data → validity is not guaranteed for every state

Fuzzy logic based control

+ quick development of a controller based on experience
- states which are not considered by rules can lead to malfunctions
- no deterministic procedure for the design of a fuzzy controller → liberties in the realisation of fuzzy controllers can degrade the results significantly

Model based control strategies

+ consideration of essential physical characteristics of biomass furnaces
+ well established theory for the controller design
+ state-of-the-art control methods for nonlinear systems can be applied
- labour-intensive approach if no applicable mathematical model is available
Ongoing research and future R&D topics

<table>
<thead>
<tr>
<th>State of science</th>
<th>Future R&D</th>
</tr>
</thead>
<tbody>
<tr>
<td>conventional biomass fuels (wood fuels, straw)</td>
<td>new biomass fuels annual crops, short rotation plants, waste materials from the agricultural and the food industry, etc.</td>
</tr>
<tr>
<td>modern biomass combustion technologies</td>
<td>next generation biomass combustion systems towards zero emission technologies towards new process control systems</td>
</tr>
<tr>
<td>conventional CHP technologies</td>
<td>advanced highly efficient systems supercritical boilers combined cycles</td>
</tr>
<tr>
<td>single model development</td>
<td>virtual biomass conversion plant</td>
</tr>
</tbody>
</table>

Thank you for your attention

Prof. Dr. Ingwald Obernberger
Inffeldgasse 21b, A-8010 Graz, Austria
TEL.: +43 (316) 481300; FAX: +43 (316) 4813004
Email: obernberger@bios-bioenergy.at
HOMEPAGE: http://www.bios-bioenergy.at