Advanced biomass fuel characterisation methods

Ingwald Obernberger

BIOS BIOENERGIESYSTEME GmbH

Hedwig-Katschinka-Straße 4, A-8020 Graz, Austria TEL.: +43 (316) 481300; FAX: +43 (316) 4813004 E-MAIL: office@bios-bioenergy.at HOMEPAGE: http://www.bios-bioenergy.at

Introduction and objectives

- General approach regarding the application of advanced biomass fuel characterisation methods
- Methods applied
- > Application examples
- Summary and conclusions

Introduction and objectives (I)

- To widen the available biomass feedstock potential for heat and power production
 - agricultural biomass
 - biogenic residues
 - energy crops

gain rising interest on the fuel market.

- These feedstocks are typically so-called difficult fuels in terms of combustion related issues. Compared with conventional chemically untreated wood fuels they usually contain increased
 - contents of ash forming elements (especially Si and K)
 - higher risks for slagging, deposit formation and particulate emissions
 - S, CI and N contents
 - → higher gaseous emissions (SO_x, HCI, NO_x)
 - elevated high temperature CI corrosion risks

Introduction and objectives (II)

- Different approaches have been developed to improve the combustion behaviour of difficult biomass fuels
 - Ieaching
 - torrefication
 - fuel blending and additive utilisation
- Especially regarding ash related problems the utilisation of inorganic additives provides the possibility to create designer fuels with significantly improved combustion properties from problematic feedstocks.

Advanced fuel characterisation methods can provide an important basis for

- the combustion related characterisation of difficult biomass fuels for which no long-term experience concerning their combustion properties is available
- to quickly evaluate fuel blends and fuel-additive-mixtures in order to asses problematic combustion related issues.

For that purpose a 3-step evaluation procedure has been developed

Assessment of biomass fuels, blends and fuel/additive mixtures – 3-step procedure

STEP 1

STEP 2

Thermodynamic high temperature equilibrium calculations for

•fuels

•mixtures of the fuel with potential additives

Improved understanding regarding difficult fuels and the influence of blending and selected additives on •ash transformation •ash melting •element release

• Semi-quantitative information

STEP 3

Lab-scale reactor combustion tests with

 selected fuel/additive mixtures

- Information regarding the combustion process
- •Release data for N species as well as inorganic compounds (K, Na, S, Cl)
- •Indications regarding the ash melting behaviour

5

Combustion related characterisation of

- •the original fuel
- blends resp. mixtures of the fuel with potential additives
 by
- •chemical analyses
- •evaluation of fuel indexes
- •Gain first estimates on ash related properties and how they can be influenced by blending and additivation
- Identification of meaningful additives and reasonable additive/fuel mixing rates
- Qualitative information

Methodology – Step 1: chemical analyses and evaluation of fuel indexes (I)

Fuel sampling

- Agricultural biomasses, biogenic residues and energy crops usually show a wide range of compositions
- Therefore, representative fuel sampling is a relevant initial issue
- Fuel analyses
 - Only highly accurate methods specially developed for biomass fuels shall be used
 - It is recommended to analyse the original fuel and not ashed fuel samples
 - Proposed analyses methods for the determination of the contents of major ash forming elements
 - in accordance with EN 15290 (part A) the fuel is digested in a closed vessel by the help of reagents, temperature and pressure
 - proposed mixture of reagents: HNO₃ (65%) / HF (40%) / H₃BO₃

Methodology – Step 1: chemical analyses and evaluation of fuel indexes (II)

Evaluation of fuel indexes

- Fuel indexes are defined in order to provide first indications regarding relevant combustion related properties of biomass fuels (e.g. gaseous NO_x, SO_x and HCI emissions, ash related problems)
- Fuel indexes are based on the physical behaviour, chemical reaction pathways as well as interactions between certain elements during combustion.
- Specific fuel indexes, tailored to biomass fuels as well as fixed-bed combustion, have been developed and their applicability has been proven.
- Within the fuel characterisation strategy introduced the following fuel indexes are of major relevance:
 - molar CI/Si ratio
 - molar (Si+P+K)/(Ca+Mg+AI) ratio
 - molar (K+Na)/[x(2S+Cl)] ratio
 - molar 2S/CI ratio

- → K release (aerosol formation)
- → ash melting behaviour
- \rightarrow HCI and SO_x formation
- → high temperature CI-corrosion

Methodology – Step 1: chemical analyses and evaluation of fuel indexes (III)

molar CI/Si ratio

molar (Si+P+K)/(Ca+Mg+AI) ratio

Release in wt% of the K in the fuel

The correlation is statistically significant

Data taken from pilot and real scale test runs at grate-fired boilers performed by BIOS BIOENERGIESYSTEME GmbH

Increasing K-release with increasing value of the index

SST ... shrinkage starting temperature

The correlation is statistically significant

Data taken from the internal biomass fuel database of BIOS BIOENERGIESYSTEME GmbH

Decreasing ash melting temperatures with increasing value of the index

Methodology – Step 1: chemical analyses and evaluation of fuel indexes (IV)

molar (K+Na)/(x(2S+CI)] ratio

emissions in mg/Nm³ related to dry flue gas and 13 vol% O₂

Data taken from pilot and real scale test runs at grate-fired boilers performed by BIOS BIOENERGIESYSTEME GmbH x typically between 2 and 15

Index values <0.4 indicate increasing SO₂ and HCI emissions

molar 2S/CI ratio

Data taken from the internal biomass fuel database of BIOS BIOENERGIESYSTEME GmbH

- > 2S/CI < 4: high high temperature corrosion risk
- > 2S/CI > 8: low high temperature corrosion risk

Methodology – Step 2: thermodynamic high temperature equilibrium calculations (TEC)

- TEC provide the possibility to investigate the
 - release behaviour of inorganic compounds
 - ash melting behaviour
- TEC are performed under the assumption that chemical equilibrium can be reached for the system investigated
- Applied software and databases
 - FactSage 6.2
 - component database Fact 53
 - solution databases FToxid (slags and other oxide mixtures) and FTsalt (liquid and solid salt phases)
- More than 1,000 components and 9 solutions (which have been shown to be stable and thermodynamically relevant) have been considered
- The selection has been done application oriented for biomass fuels and ashes.
- Temperature range typically evaluated: 700 1,600°C

Methodology – Step 3: lab-scale reactor tests

- Reactor temperature selectable (reactor is pre-heated)
- Oxidation medium selectable (passes through the fuel bed)
- Comprehensive flue gas analyses
- Analyses of the fuel and the residues (ashes)
- Decomposition process can be followed by thermocouples in the fuel bed

Example: Fixed-bed lab-scale reactor of Graz University of Technology

Ref.: BRUNNER T., et al., 2013: Advanced biomass fuel characterisation based on tests with a specially designed lab-reactor. Energy Fuels, 2013, 27 (10), pp 5691–5698

Step 1: Chemical composition and selected fuel indexes – examples: wheat and rape straw, maize residues

		maize residues	wheat straw	rape straw
ash content	wt% d.b.	2.08	6.46	7.90
S	mg/kg d.b.	475	926	3,420
Cl	mg/kg d.b.	1,870	1,730	6,790
Si	mg/kg d.b.	1,890	19,000	3,260
Ca	mg/kg d.b.	540	2,920	13,100
Mg	mg/kg d.b.	578	978	1,830
К	mg/kg d.b.	7,180	7,990	18,200
Na	mg/kg d.b.	42	84	956
Р	mg/kg d.b.	774	510	650
Al	mg/kg d.b.	219	388	671
Fe	mg/kg d.b.	239	202	360
Mn	mg/kg d.b.	14	29	22
X		3.45	4.43	1.49
(K+Na)/x(2S+Cl)	mol/mol	0.65	0.44	0.84
(Si+P+K)/(Ca+Mg+Al)	mol/mol	6.08	7.04	1.41
Cl/Si	mol/mol	0.78	0.07	1.65
2S/CI	mol/mol	0.56	1.18	1.11

Explanations: data of representative fuel samples taken during a project performed by the IPPT/ TU Graz and BIOS BIOENERGIESYSTEME GmbH (FFG-project 838762, AgroAdd-Fuels), d.b. ... dry basis

Step 1: Evaluation of selected fuel indexes (I)

Explanations: Database values from lab-scale reactor tests

wheat straw:	full symbol: pure wheat straw open symbol: wheat straw additivated with 4 wt% kaolin
rape straw:	full symbol: pure wheat straw open symbol: wheat straw additivated with 4 wt% bentonite
maize residues:	full symbol: pure wheat straw open symbol: wheat straw additivated with 6 wt% bentonite

BIOENERGIESYSTEME GmbH Hedwig-Katschinka-Straße 4, A-8020 Graz

Step 1: Evaluation of selected fuel indexes (II)

Step 2: thermodynamic high temperature equilibrium calculations (TEC) (I)

TEC can provide in-depth information regarding ash transformation, especially with respect to

- ash melting and
- K release

Therefore, they are especially for investigations regarding fuel blending and additive selection a valuable tool.

In the example below, the T30 (temperature at which 30% of the ashes according to TEC occur in molten phases) has been used as an indicator for the shrinkage starting temperature.

Step 2: thermodynamic high temperature equilibrium calculations (TEC) (II)

Step 2: thermodynamic high temperature equilibrium calculations (TEC) (III)

> Wheat straw:

- K-silicate compounds are relevant for the low ash melting temperatures.
- They are transformed into molten phases (slags) at temperatures above 750°C.

Wheat straw + dolomite:

- The formation of solid phases containing Ca, Si, Mg and Al is preferred compared to the K-silicate compounds.
- Therefore, the formation of the molten K-Si-compounds at 750°C is hindered and T30 increases to above 1,200°C.
- The formation of Ca-silicates instead of K-silicates leads to an increased K release.

Wheat straw + kaolin:

- Formation of K-AI-Si-phases which remain solid also above 750°C.
- Molten phases start to form above 950°C (T30 above 1,000°C).
- A stronger embedding of K in the K-AI-Si-phases prevails resulting in a significantly reduced K-release.

TEC as a suitable tool to understand chemical reactions / compound formation of relevance and to select suitable additives; trends have been proven by experiments

BIOENERGIESYSTEME GmbH Hedwig-Katschinka-Straße 4, A-8020 Graz

Step 3: results of lab-scale reactor tests – N-conversion

Step 3: results of lab-scale reactor tests – Release of S, CI, K and Na

- Quantitative information regarding inorganic element release can be gained
- The influence of fuel additive utilisation and fuel blending on inorganic element release can be studied

Release rate = $1 - \frac{element \ mass \ in \ the \ ash}{element \ mass \ in \ the \ fuel} * 100$

Comparison with real-scale test run data (I)

Comparison of results from lab-scale reactor (LR) tests with results from TEC

- Significant increase of the ash melting temperature with increasing kaolin addition
- K release decreases considerably with increasing kaolin addition
- Experimental results provide quantitative data and confirm the qualitative trends derived from TEC
- Suitability as well as meaningful amounts of additives can be evaluated

Comparison with real-scale test run data (II)

- Results from test runs at a 180 kW_{th} grate-fired combustion unit with
 - wheat straw pellets
 - wheat straw pellets containing 2 wt% and 4 wt% kaolin
- Aerosol emission reduction:

relative decrease of the aerosol emissions due to kaolin addition

Comparison with real-scale test run data (III)

Images of the grate ashes

wheat straw

wheat straw + 4 wt% kaolin

Summary and conclusions (I)

A 3-step procedure for the application of advanced fuel characterisation tools for the combustion related assessment of biomass fuels, fuel blends and fuel/additive-mixtures has been developed.

The procedure allows for a

- quick and targeted assessment of combustion related fuel properties and
- an assessment of influences of additives on these fuel properties at rather low efforts and risks compared to real-scale combustion tests.
- The procedure presented allows for a comprehensive fuel evaluation based on standard analyses as well as available software and equipment (reactors with functionalities comparable with the one presented exist).
- On demand it can also be supplemented by additional test methods to elucidate specific aspects (e.g.: SEM/EDX analyses, chemical fractionation tests, etc.)

Some relevant aspects have to be considered

- The evaluation has to be done fuel specific
 At least during the third step representative samples of the fuel of interest shall be utilised
- So-called problematic biomass fuels often show considerable variation ranges regarding their chemical composition
 has to be considered when defining the additive ratio to be finally applied
- Biomass fuel characterisation and evaluation according to the procedure presented can support
 - fuel selection for existing combustion plants
 - the design of new combustion plants
 - the development of strategies to improve the quality of a problematic biomass fuel by additive utilisation or fuel blending

Contact:

Prof. Dipl.-Ing. Dr. Ingwald Obernberger Hedwig-Katschinka-Straße 4, A-8020 Graz, Austria TEL.: +43 (316) 481300; FAX: +43 (316) 4813004 Email: obernberger@bios-bioenergy.at HOMEPAGE: http://www.bios-bioenergy.at